EUROPA Coding Practices

General Practices
¢ Ensure you declare variables and methods in their narrowest scope.
¢ [f you declare a static variable inside a non-static method, double check that the method should not be static
and also double check that the variable should not be a member of the class.
® We discourage writing code in header files unless needed for templates or proven performance.

e Use STL classes and methods unless what you need is not provided. Same goes for any other code. Re *
use as much as possible.

Pre-processing
¢ Include system headers by using the angle bracket style. (#include <stdio>)
¢ Include user files by using the double quote style. (#include "File.h")

® Do not define your own pre-processor macros to control level of or presence of debugging output or error
checks.

Namespaces

e Use the std:: prefix, or 'using namespace std;' when using STL.
¢ Put Europa code in the Europa namespace.

Constants
e Use DEFINE_GLOBAL_CONSTANT and DECLARE_GLOBAL_CONSTANT for globals.
Class Members

® When handling static data, you must provide an automatic purge mechanism or provide an explicit purge
method.

Initialization and Termination

e We should standardize method calls to initialization and termination methods. Such as nddl initialization
which cascades onto constraint engine initialization.

Use

e Use const iterators unless you have to use a non-const iterator.
® When using const iterators, use ++iterator rather than iterator++.

References

e Direct pointer references are discouraged; use class Id instead.
® When creating a reference, create an m member that holds the id that gets constructed in the constructor
initializer, in the destructor the m should be removed.

EUROPA Coding Practices 1



® When deleting references to ids call delete on the cast operator (e.g. delete (ConstrainedVariable? *) ref).

Numbers

¢ Define an enumerated type to handle number references instead of using magic numbers.

Classes

e Capitalize names of classes. When composing names for classes capitalize the first letter of each word.
¢ Declare a virtual destructor.

Virtual Classes

® Declare a protected constructor.
® Declare all functions pure virtual.

Methods

® Declare a method const where possible.

® Do not return bare pointers or non-const references.

e If the caller can own a data structure that is to be populated in the callee, create the data structure in the
caller and then pass it by reference as an argument.

¢ Avoid copying of data structures where possible.

® Declare non-primitive arguments as const references.

® Return non-primitive values as const references.

Checks

e Use checkError to express pre-conditions.
e Use checkError to express invariants.
e Use checkError to express post-conditions.
¢ Avoid using non-const functions in checkError tests.
¢ Do not use assert.
® Do not use Id::isValid outside of checkError.
Do nowwrite "if (Test) checkError(...Check...);". Write "checkError(!Test $$ ...Check...)".

Output

e Use the Europa debugging output management system.
¢ Do not put debugging output into stdout or stderr.

Documentation

e Use doxygen style comments with the javadoc style keywords.

References



	tmpFe1Jy4tracpdf

